LS-DYNA Monitoring & Analytics
Leverage Vantage License Manager's specialized monitoring capabilities to gain deep insights into your LS-DYNA license utilization across users, teams, departments, and clusters. This guide focuses on using Vantage's license usage dashboard to understand solver-specific usage patterns and parallel processing efficiency for optimal license management.
Vantage License Usage Dashboard
Real-Time LS-DYNA Monitoring
The Vantage dashboard provides live monitoring of your LSTC license infrastructure with specialized insights for LS-DYNA solver usage:
Live Solver Status Overview
# Enable real-time LS-DYNA monitoring
vantage licenses monitor lsdyna-server \
--real-time \
--refresh-interval 30s \
--include-solvers explicit,implicit,em,thermal \
--include-parallel-tokens smp,mpp
# View live solver status
vantage dashboard licenses --server lsdyna-server \
--solver-view \
--parallel-token-tracking
Dashboard Features:
- Solver-specific utilization meters: Live usage for Explicit, Implicit, EM, and Thermal solvers
- Parallel token allocation: Real-time SMP and MPP token distribution
- Active simulation table: Current users, solver types, parallel configuration, and runtime
- Queue status with solver awareness: Users waiting with solver and token requirements
- Performance metrics: Solver efficiency and parallel scaling effectiveness
LS-DYNA Solver Utilization Heatmap
# Dashboard configuration for solver utilization heatmap
apiVersion: dashboard.vantage.com/v1
kind: Panel
metadata:
name: lsdyna-solver-utilization-heatmap
spec:
title: "LS-DYNA Solver Utilization by Time and Type"
type: heatmap
timeRange: 7d
queries:
- query: |
lsdyna_solver_usage_percent{server="lsdyna-server",solver=~"explicit|implicit|em|thermal"}
groupBy: [hour, solver]
aggregation: avg
visualization:
colorScheme: "blue-green-yellow-red"
thresholds:
- value: 60
color: yellow
- value: 80
color: orange
- value: 90
color: red
Parallel Processing Analytics
SMP and MPP Token Utilization
# Configure parallel token monitoring
vantage analytics parallel-tokens configure \
--server lsdyna-server \
--track-smp-efficiency \
--track-mpp-scaling \
--optimize-token-allocation \
--generate-scaling-recommendations
# View parallel token analytics
vantage dashboard parallel-tokens --server lsdyna-server \
--efficiency-metrics \
--scaling-analysis \
--cost-optimization
Parallel Token Analytics Features:
- Token efficiency tracking: How effectively users utilize allocated SMP and MPP tokens
- Scaling performance: Parallel efficiency across different token counts
- Optimal allocation recommendations: Suggested token counts for different problem sizes
- Cost per token analysis: Economic efficiency of parallel processing usage
- Idle token detection: Identification of over-allocated parallel resources
User Analytics and Tracking
Individual User LS-DYNA Insights
Vantage provides detailed analytics for understanding individual LS-DYNA user behavior and solver preferences:
User Solver Preference Dashboard
# Configure user-specific LS-DYNA monitoring
vantage analytics users configure \
--server lsdyna-server \
--track-solver-preferences \
--track-parallel-efficiency \
--track-simulation-complexity \
--generate-user-recommendations
# View user analytics
vantage dashboard users --server lsdyna-server \
--metrics solver-usage,parallel-efficiency,cost \
--time-range 30d \
--include-solver-breakdown
User Analytics Features:
- Solver usage patterns: Which LS-DYNA solvers each user prefers and frequency
- Parallel processing efficiency: How effectively users scale their simulations
- Simulation complexity analysis: Problem size correlation with resource usage
- Cost attribution per user: Detailed cost breakdown by solver type and token usage
- User productivity metrics: Solver throughput and time-to-solution analysis
User Performance Analysis
# User solver performance dashboard
apiVersion: dashboard.vantage.com/v1
kind: Dashboard
metadata:
name: lsdyna-user-performance
spec:
title: "LS-DYNA User Performance Analysis"
refresh: 5m
panels:
- title: "Top LS-DYNA Users by Solver Hours"
type: table
targets:
- query: |
topk(10,
sum by (user) (
lsdyna_solver_hours{server="lsdyna-server"}
)
)
columns:
- name: "User"
field: "user"
- name: "Total Solver Hours"
field: "value"
- name: "Preferred Solver"
field: "primary_solver"
- name: "Parallel Efficiency"
field: "parallel_efficiency"
- name: "Cost per Hour"
field: "cost_per_hour"
- title: "Solver Usage Distribution by User"
type: stackedbarchart
targets:
- query: |
lsdyna_solver_usage{server="lsdyna-server"}
by (user, solver)
legend: "{{solver}}"
- title: "Parallel Token Efficiency by User"
type: scatter
targets:
- query: |
lsdyna_parallel_efficiency{server="lsdyna-server"}
vs
lsdyna_token_count{server="lsdyna-server"}
visualization:
xAxis: "Token Count"
yAxis: "Parallel Efficiency %"
bubbleSize: "simulation_runtime"
Solver-Specific User Productivity
# LS-DYNA user productivity analysis script
#!/usr/bin/env python3
# /opt/lstc/bin/user-solver-analysis.py
import requests
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
class LSDynaUserAnalytics:
def __init__(self, vantage_api_endpoint, api_key):
self.api_endpoint = vantage_api_endpoint
self.headers = {'Authorization': f'Bearer {api_key}'}
def get_user_solver_data(self, server, days=30):
"""Fetch user solver data from Vantage API"""
end_date = datetime.now()
start_date = end_date - timedelta(days=days)
params = {
'server': server,
'start_date': start_date.isoformat(),
'end_date': end_date.isoformat(),
'include_solver_details': True,
'include_parallel_metrics': True
}
response = requests.get(
f"{self.api_endpoint}/licenses/lsdyna/users",
headers=self.headers,
params=params
)
return response.json()
def calculate_solver_efficiency_scores(self, solver_data):
"""Calculate solver-specific efficiency scores"""
df = pd.DataFrame(solver_data['users'])
# Calculate solver efficiency metrics
df['explicit_efficiency'] = df['explicit_productive_time'] / df['explicit_total_time']
df['implicit_efficiency'] = df['implicit_productive_time'] / df['implicit_total_time']
df['parallel_scaling_score'] = df['achieved_speedup'] / df['theoretical_speedup']
df['token_utilization'] = df['productive_tokens'] / df['allocated_tokens']
# Composite efficiency score for each solver
df['explicit_score'] = (
(df['explicit_efficiency'] * 0.4) +
(df['parallel_scaling_score'] * 0.3) +
(df['token_utilization'] * 0.3)
) * 100
df['implicit_score'] = (
(df['implicit_efficiency'] * 0.5) +
(df['parallel_scaling_score'] * 0.3) +
(df['token_utilization'] * 0.2)
) * 100
return df
def analyze_solver_preferences(self, solver_data):
"""Analyze user solver preferences and usage patterns"""
df = pd.DataFrame(solver_data['users'])
# Calculate solver preference metrics
df['primary_solver'] = df[['explicit_hours', 'implicit_hours', 'em_hours', 'thermal_hours']].idxmax(axis=1)
df['solver_diversity'] = (df[['explicit_hours', 'implicit_hours', 'em_hours', 'thermal_hours']] > 0).sum(axis=1)
df['solver_specialization'] = df[['explicit_hours', 'implicit_hours', 'em_hours', 'thermal_hours']].max(axis=1) / df[['explicit_hours', 'implicit_hours', 'em_hours', 'thermal_hours']].sum(axis=1)
# Identify optimization opportunities
df['optimization_potential'] = np.where(
(df['parallel_scaling_score'] < 0.7) & (df['allocated_tokens'] > 8),
'parallel_overallocation',
np.where(
(df['token_utilization'] < 0.5),
'token_waste',
np.where(
(df['solver_efficiency'] < 0.6),
'solver_mismatch',
'optimized'
)
)
)
return df
def generate_user_recommendations(self, server):
"""Generate personalized recommendations for LS-DYNA users"""
data = self.get_user_solver_data(server)
efficiency_df = self.calculate_solver_efficiency_scores(data)
preferences_df = self.analyze_solver_preferences(data)
recommendations = []
for _, user in preferences_df.iterrows():
user_recommendations = {
'user': user['username'],
'recommendations': []
}
# Parallel efficiency recommendations
if user['parallel_scaling_score'] < 0.7:
user_recommendations['recommendations'].append({
'type': 'parallel_optimization',
'message': f"Consider reducing parallel tokens from {user['avg_tokens']} to {user['optimal_tokens']} for better efficiency",
'potential_savings': f"${user['potential_savings']:.2f}/month"
})
# Solver selection recommendations
if user['solver_efficiency'] < 0.8 and user['solver_diversity'] > 2:
user_recommendations['recommendations'].append({
'type': 'solver_specialization',
'message': f"Focus on {user['most_efficient_solver']} solver for better performance",
'efficiency_gain': f"{user['efficiency_improvement']:.1f}%"
})
# Token allocation recommendations
if user['token_utilization'] < 0.6:
user_recommendations['recommendations'].append({
'type': 'token_optimization',
'message': f"Reduce token allocation to improve cost efficiency",
'cost_savings': f"${user['token_savings']:.2f}/month"
})
recommendations.append(user_recommendations)
return recommendations
# Usage example
if __name__ == "__main__":
analytics = LSDynaUserAnalytics(
"https://api.vantage.com/v1",
"your-api-key"
)
recommendations = analytics.generate_user_recommendations("lsdyna-server")
for user_rec in recommendations:
print(f"\nRecommendations for {user_rec['user']}:")
for rec in user_rec['recommendations']:
print(f" - {rec['type']}: {rec['message']}")
Team and Department Analytics
Organizational Solver Distribution
Vantage provides comprehensive analytics for understanding LS-DYNA solver utilization across organizational structures:
Department-Level Solver Analytics
# Configure department tracking for LS-DYNA
vantage analytics departments configure \
--server lsdyna-server \
--map-users-to-departments /etc/vantage/user-department-mapping.yaml \
--enable-solver-cost-attribution \
--enable-parallel-budget-tracking \
--track-solver-preferences-by-dept
# View department solver analytics
vantage dashboard departments --server lsdyna-server \
--include-solver-breakdown \
--include-parallel-efficiency \
--include-cost-analysis
Department Analytics Features:
- Solver preference by department: Which departments use which LS-DYNA solvers most
- Parallel processing patterns: How different departments utilize SMP vs MPP tokens
- Cost center attribution: Automatic allocation of solver and token costs to departments
- Efficiency comparisons: Compare LS-DYNA utilization efficiency across departments
- Specialization analysis: Identify departments with specific solver expertise
Cross-Department Solver Collaboration
# Department solver analytics dashboard
apiVersion: dashboard.vantage.com/v1
kind: Dashboard
metadata:
name: lsdyna-department-analytics
spec:
title: "LS-DYNA Department Analytics"
panels:
- title: "Solver Usage by Department"
type: stackedbarchart
targets:
- query: |
sum by (department, solver) (
lsdyna_solver_hours{server="lsdyna-server"}
)
legend: "{{solver}}"
- title: "Department Parallel Efficiency"
type: bargraph
targets:
- query: |
avg by (department) (
lsdyna_parallel_efficiency{server="lsdyna-server"}
)
thresholds:
- value: 80
color: green
- value: 60
color: yellow
- value: 40
color: red
- title: "Solver Cost Distribution"
type: piechart
targets:
- query: |
sum by (department) (
lsdyna_solver_cost{server="lsdyna-server"}
)
- title: "Department Solver Specialization"
type: heatmap
targets:
- query: |
lsdyna_solver_specialization_index{server="lsdyna-server"}
by (department, solver)
visualization:
xAxis: "solver"
yAxis: "department"
colorScheme: "blue-white-red"
Engineering Team Optimization
# Configure team-specific solver optimization
vantage analytics teams configure \
--server lsdyna-server \
--track-team-solver-efficiency \
--identify-knowledge-sharing-opportunities \
--generate-team-optimization-recommendations
# View team collaboration opportunities
vantage analytics collaboration-opportunities \
--server lsdyna-server \
--solver-expertise-sharing \
--parallel-optimization-training
Cluster-Based Analytics
License Distribution Across HPC Resources
Understand how LS-DYNA licenses and parallel tokens are utilized across different compute clusters:
Cluster Solver Performance Dashboard
# Configure cluster-based LS-DYNA tracking
vantage analytics clusters configure \
--server lsdyna-server \
--track-solver-locality \
--monitor-parallel-scaling \
--enable-hpc-integration \
--optimize-token-distribution
# View cluster solver analytics
vantage dashboard clusters --server lsdyna-server \
--include-solver-performance \
--include-parallel-scaling \
--include-queue-efficiency
Cluster Analytics Features:
- Solver performance by cluster: How different solvers perform on different hardware
- Parallel scaling efficiency: Token utilization effectiveness across cluster architectures
- Queue optimization: Solver-aware job scheduling across clusters
- Resource correlation: Relationship between compute resources and solver performance
- Geographic solver distribution: LS-DYNA usage across different data centers
Multi-Cluster Solver Optimization
# Cluster solver optimization dashboard
apiVersion: dashboard.vantage.com/v1
kind: Dashboard
metadata:
name: lsdyna-cluster-optimization
spec:
title: "LS-DYNA Multi-Cluster Optimization"
panels:
- title: "Solver Performance by Cluster"
type: heatmap
targets:
- query: |
lsdyna_solver_performance_score{server="lsdyna-server"}
by (cluster, solver)
visualization:
xAxis: "solver"
yAxis: "cluster"
colorScheme: "red-yellow-green"
- title: "Parallel Scaling Efficiency"
type: timeseries
targets:
- query: |
lsdyna_parallel_efficiency{server="lsdyna-server"}
by (cluster, token_count)
legend: "{{cluster}} - {{token_count}} tokens"
- title: "Optimal Cluster Assignment"
type: table
targets:
- query: |
lsdyna_optimal_cluster_assignment{server="lsdyna-server"}
columns:
- name: "Solver"
- name: "Problem Size"
- name: "Recommended Cluster"
- name: "Expected Efficiency"
- name: "Cost Impact"
- title: "Queue Wait Time by Solver"
type: bargraph
targets:
- query: |
avg by (cluster, solver) (
lsdyna_queue_wait_time{server="lsdyna-server"}
)
unit: "minutes"
HPC Scheduler Integration Analytics
# Cluster LS-DYNA optimization script
#!/usr/bin/env python3
# /opt/lstc/bin/cluster-solver-optimization.py
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
class LSDynaClusterOptimizer:
def __init__(self, vantage_api):
self.api = vantage_api
def analyze_cluster_solver_performance(self, server, days=30):
"""Analyze solver performance across clusters"""
data = self.api.get_cluster_solver_data(server, days)
df = pd.DataFrame(data)
# Calculate performance metrics per cluster-solver combination
cluster_solver_metrics = df.groupby(['cluster', 'solver']).agg({
'simulation_time': 'mean',
'parallel_efficiency': 'mean',
'cost_per_simulation': 'mean',
'queue_wait_time': 'mean',
'memory_usage': 'mean',
'cpu_utilization': 'mean'
}).reset_index()
# Calculate performance scores
cluster_solver_metrics['performance_score'] = (
(1 / cluster_solver_metrics['simulation_time'].rank()) * 0.3 +
cluster_solver_metrics['parallel_efficiency'].rank() * 0.3 +
(1 / cluster_solver_metrics['cost_per_simulation'].rank()) * 0.2 +
(1 / cluster_solver_metrics['queue_wait_time'].rank()) * 0.2
)
return cluster_solver_metrics
def predict_optimal_allocation(self, cluster_metrics, job_requirements):
"""Predict optimal cluster allocation for LS-DYNA jobs"""
# Prepare features for machine learning model
features = ['solver_type', 'element_count', 'time_steps', 'parallel_tokens']
target = 'performance_score'
# Train model on historical data
X = cluster_metrics[features]
y = cluster_metrics[target]
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X, y)
# Predict optimal allocation for new jobs
predictions = []
for job in job_requirements:
job_features = [job[feature] for feature in features]
# Predict performance for each cluster
cluster_predictions = {}
for cluster in cluster_metrics['cluster'].unique():
cluster_job = job_features + [cluster]
predicted_score = model.predict([cluster_job])[0]
cluster_predictions[cluster] = predicted_score
# Recommend best cluster
best_cluster = max(cluster_predictions, key=cluster_predictions.get)
predictions.append({
'job_id': job['job_id'],
'recommended_cluster': best_cluster,
'predicted_performance': cluster_predictions[best_cluster],
'alternative_clusters': sorted(
cluster_predictions.items(),
key=lambda x: x[1],
reverse=True
)[1:3]
})
return predictions
def generate_cluster_optimization_report(self, server):
"""Generate comprehensive cluster optimization report"""
cluster_metrics = self.analyze_cluster_solver_performance(server)
# Identify optimization opportunities
optimizations = []
# Find underperforming cluster-solver combinations
underperforming = cluster_metrics[
cluster_metrics['performance_score'] < cluster_metrics['performance_score'].quantile(0.25)
]
for _, row in underperforming.iterrows():
optimizations.append({
'type': 'performance_improvement',
'cluster': row['cluster'],
'solver': row['solver'],
'issue': 'low_performance_score',
'recommendation': 'Consider hardware upgrade or configuration tuning',
'potential_improvement': f"{(cluster_metrics['performance_score'].max() - row['performance_score']) / row['performance_score'] * 100:.1f}%"
})
# Find cost optimization opportunities
high_cost = cluster_metrics[
cluster_metrics['cost_per_simulation'] > cluster_metrics['cost_per_simulation'].quantile(0.75)
]
for _, row in high_cost.iterrows():
cheaper_alternatives = cluster_metrics[
(cluster_metrics['solver'] == row['solver']) &
(cluster_metrics['cost_per_simulation'] < row['cost_per_simulation'])
].sort_values('cost_per_simulation')
if not cheaper_alternatives.empty:
best_alternative = cheaper_alternatives.iloc[0]
optimizations.append({
'type': 'cost_optimization',
'cluster': row['cluster'],
'solver': row['solver'],
'issue': 'high_cost',
'recommendation': f"Consider migrating to {best_alternative['cluster']}",
'potential_savings': f"${(row['cost_per_simulation'] - best_alternative['cost_per_simulation']):.2f} per simulation"
})
report = {
'summary': {
'total_clusters': cluster_metrics['cluster'].nunique(),
'solvers_analyzed': cluster_metrics['solver'].nunique(),
'avg_performance_score': cluster_metrics['performance_score'].mean(),
'optimization_opportunities': len(optimizations)
},
'cluster_performance': cluster_metrics.to_dict('records'),
'optimization_recommendations': optimizations
}
return report
Historical Trends and Predictive Analytics
Long-Term Solver Usage Analysis
# Configure historical LS-DYNA trend analysis
vantage analytics trends configure \
--server lsdyna-server \
--retention-period 2y \
--enable-solver-seasonal-analysis \
--enable-parallel-growth-prediction \
--enable-capacity-planning \
--track-solver-evolution
# Generate trend analysis
vantage analytics trends generate \
--server lsdyna-server \
--include-solver-adoption-patterns \
--include-parallel-scaling-trends \
--include-capacity-recommendations
Solver Evolution and Technology Adoption
# Solver evolution dashboard
apiVersion: dashboard.vantage.com/v1
kind: Dashboard
metadata:
name: lsdyna-solver-evolution
spec:
title: "LS-DYNA Solver Evolution and Adoption"
panels:
- title: "Solver Adoption Over Time"
type: timeseries
timeRange: 2y
targets:
- query: |
rate(lsdyna_solver_usage_total{server="lsdyna-server"}[30d])
by (solver)
legend: "{{solver}}"
- title: "Parallel Token Growth"
type: timeseries
targets:
- query: |
avg_over_time(
lsdyna_parallel_tokens_used{server="lsdyna-server"}[7d]
)
by (token_type)
legend: "{{token_type}} tokens"
- title: "Simulation Complexity Trends"
type: scatter
targets:
- query: |
lsdyna_simulation_complexity{server="lsdyna-server"}
vs
lsdyna_simulation_duration{server="lsdyna-server"}
visualization:
xAxis: "Problem Complexity (elements)"
yAxis: "Simulation Duration (hours)"
bubbleSize: "parallel_tokens"
- title: "Future Capacity Predictions"
type: graph
targets:
- query: |
predict_linear(
lsdyna_peak_token_usage{server="lsdyna-server"}[8w], 12w
)
- query: |
lsdyna_token_capacity{server="lsdyna-server"}
legend:
- "Predicted Peak Usage"
- "Current Capacity"
Cost Analysis and Optimization
Solver-Specific Cost Attribution
# Configure LS-DYNA cost analysis
vantage analytics costs configure \
--server lsdyna-server \
--solver-license-costs /etc/vantage/lsdyna-license-costs.yaml \
--parallel-token-costs /etc/vantage/lsdyna-token-costs.yaml \
--enable-solver-roi-analysis \
--enable-parallel-optimization-recommendations
# Generate cost analysis
vantage analytics costs analyze \
--server lsdyna-server \
--include-solver-utilization-costs \
--include-parallel-waste-analysis \
--include-optimization-savings
ROI and Efficiency Metrics by Solver
# LS-DYNA cost optimization dashboard
apiVersion: dashboard.vantage.com/v1
kind: Dashboard
metadata:
name: lsdyna-cost-optimization
spec:
title: "LS-DYNA Cost Analysis and Optimization"
panels:
- title: "Cost vs Performance by Solver"
type: scatter
targets:
- query: |
lsdyna_solver_annual_cost{server="lsdyna-server"}
vs
lsdyna_solver_performance_score{server="lsdyna-server"}
visualization:
xAxis: "Performance Score"
yAxis: "Annual Cost $"
bubbleSize: "usage_hours"
- title: "Parallel Token ROI"
type: bargraph
targets:
- query: |
lsdyna_parallel_roi{server="lsdyna-server"}
by (token_type, token_count)
legend: "{{token_type}} - {{token_count}} tokens"
- title: "Underutilized Solver Investment"
type: stat
targets:
- query: |
sum(
lsdyna_solver_annual_cost{server="lsdyna-server"}
* (1 - lsdyna_solver_utilization_percent{server="lsdyna-server"} / 100)
)
unit: "currency"
title: "Annual Underutilization Cost ($)"
- title: "Cost per Simulation by Solver"
type: table
targets:
- query: |
lsdyna_cost_per_simulation{server="lsdyna-server"}
by (solver, complexity_category)
columns:
- name: "Solver"
- name: "Complexity"
- name: "Avg Cost/Simulation"
- name: "Parallel Efficiency"
- name: "ROI Score"
Alerting and Performance Monitoring
LS-DYNA Specific Alerts
# Configure LS-DYNA specific alerting
vantage alerts configure lsdyna-server \
--solver-utilization-threshold 85 \
--parallel-efficiency-threshold 60 \
--simulation-performance-degradation \
--cost-budget-alerts \
--queue-length-alerts
# Set up solver-specific notification channels
vantage alerts channels configure \
--email simulation-team@company.com \
--slack "#lsdyna-alerts" \
--webhook https://alerts.company.com/lsdyna \
--escalation-policy critical-simulations
Advanced LS-DYNA Alert Rules
# LS-DYNA intelligent alerting configuration
apiVersion: alerting.vantage.com/v1
kind: AlertRule
metadata:
name: lsdyna-intelligent-alerts
spec:
server: lsdyna-server
rules:
- name: "Solver Queue Backlog"
condition: |
lsdyna_queue_length > 10
duration: 5m
severity: warning
message: "LS-DYNA {{$labels.solver}} queue has {{$value}} jobs waiting"
- name: "Parallel Efficiency Drop"
condition: |
lsdyna_parallel_efficiency < 60
duration: 10m
severity: warning
message: "User {{$labels.user}} parallel efficiency dropped to {{$value}}%"
- name: "Token Waste Alert"
condition: |
lsdyna_unused_token_percent > 40
duration: 15m
severity: info
message: "{{$labels.user}} has {{$value}}% unused tokens in simulation"
- name: "Solver Performance Degradation"
condition: |
lsdyna_simulation_time > (lsdyna_baseline_time * 1.5)
duration: 5m
severity: warning
message: "Simulation performance degraded: {{$value}}s vs baseline {{$labels.baseline}}s"
- name: "License Cost Budget Exceeded"
condition: |
lsdyna_monthly_cost > lsdyna_monthly_budget
duration: 1m
severity: critical
message: "LS-DYNA costs exceeded budget: ${{$value}} > ${{$labels.budget}}"
Integration with Simulation Workflows
CAE Workflow Integration
# LS-DYNA workflow optimization script
#!/usr/bin/env python3
# /opt/lstc/bin/workflow-optimization.py
import json
import yaml
from datetime import datetime
class LSDynaWorkflowOptimizer:
def __init__(self, vantage_api):
self.vantage = vantage_api
def optimize_simulation_parameters(self, job_config):
"""Optimize LS-DYNA simulation parameters based on historical data"""
# Get historical performance data for similar simulations
historical_data = self.vantage.get_similar_simulations(
element_count=job_config['element_count'],
solver_type=job_config['solver'],
tolerance=0.2
)
# Analyze optimal configurations
optimal_config = self.analyze_optimal_parameters(historical_data)
recommendations = {
'solver_selection': optimal_config['best_solver'],
'parallel_tokens': optimal_config['optimal_tokens'],
'expected_runtime': optimal_config['estimated_time'],
'cost_estimate': optimal_config['estimated_cost'],
'efficiency_score': optimal_config['expected_efficiency']
}
return recommendations
def generate_job_submission_script(self, job_config, recommendations):
"""Generate optimized job submission script"""
import textwrap
script_template = textwrap.dedent("""
#!/bin/bash
#SBATCH --job-name=lsdyna_{job_name}
#SBATCH --nodes={nodes}
#SBATCH --ntasks-per-node={tasks_per_node}
#SBATCH --cpus-per-task={cpus_per_task}
#SBATCH --time={walltime}
#SBATCH --partition={partition}
#SBATCH --licenses=lsdyna_{solver}:1,{token_type}_tokens:{token_count}
# LS-DYNA optimized execution
module load lsdyna/{version}
# Set optimal environment variables
export OMP_NUM_THREADS={omp_threads}
export I_MPI_PIN_DOMAIN={pin_domain}
# Execute LS-DYNA with optimized parameters
{lsdyna_command}
""").strip()
script_params = {
'job_name': job_config['name'],
'nodes': recommendations['optimal_nodes'],
'tasks_per_node': recommendations['tasks_per_node'],
'cpus_per_task': recommendations['cpus_per_task'],
'walltime': recommendations['estimated_walltime'],
'partition': recommendations['optimal_partition'],
'solver': recommendations['solver_selection'],
'token_type': recommendations['token_type'],
'token_count': recommendations['parallel_tokens'],
'version': job_config['lsdyna_version'],
'omp_threads': recommendations['omp_threads'],
'pin_domain': recommendations['pin_domain'],
'lsdyna_command': self.build_lsdyna_command(job_config, recommendations)
}
return script_template.format(**script_params)
def monitor_simulation_progress(self, job_id):
"""Monitor and optimize running simulation"""
job_status = self.vantage.get_job_status(job_id)
monitoring_data = {
'timestamp': datetime.now().isoformat(),
'job_id': job_id,
'status': job_status['status'],
'runtime': job_status['runtime'],
'parallel_efficiency': job_status['parallel_efficiency'],
'memory_usage': job_status['memory_usage'],
'license_utilization': job_status['license_utilization']
}
# Generate optimization recommendations for running job
if monitoring_data['parallel_efficiency'] < 60:
monitoring_data['recommendations'] = [
'Consider reducing parallel token count for better efficiency',
'Check for load imbalance in simulation model'
]
return monitoring_data
Next Steps
- High Availability: Configure redundant LSTC servers
- Troubleshooting: Diagnose and resolve LS-DYNA issues
- LS-DYNA Introduction: Return to main LS-DYNA overview
Analytics Best Practice: LS-DYNA's solver-specific licensing model provides unique opportunities for detailed analytics. Focus on parallel token efficiency and solver-specific performance metrics to maximize both computational and license ROI. Regular review of solver usage patterns helps identify opportunities for user training and workflow optimization.